
Simple, Fast, and Practical Non-Blocking 
and Blocking Concurrent Queue Algorithms 

M.M. Michael and M.L. Scott 

Technical Report 600 
December 1995 

9960605 014 
UNIVERSITY OF 
ROCHESTER 
COMPUTER SCIENCE 

rroggtmo?rsTÄi 
approved for public release; 

L __J^£Wbution Unlimited 

DUG QUALITY INSPECTED 1 



Simple, Fast, and Practical Non-Blocking and Blocking 
Concurrent Queue Algorithms * 

Maged M. Michael       Michael L. Scott 

Department of Computer Science 
University of Rochester 

Rochester, NY 14627-0226 
{michael,scott}@cs.rochester.edu 

December 1995 

Abstract 

Drawing ideas from previous authors, we present a new non-blocking concurrent queue algorithm and anew 
two-lock queue algorithm in which one enqueue and one dequeue can proceed concurrently. Both algorithms 
are simple, fast, and practical; we were surprised not to find them in the literature. Experiments on a 12-node 
SGI Challenge multiprocessor indicate that the new non-blocking queue consistently outperforms the best 
known alternatives; it is the clear algorithm of choice for machines that provide a universal atomic primitive 
(e.g. compare_and_swap or load_linked/store_conditional). The two-lock concurrent queue 
outperforms a single lock when several processes are competing simultaneously for access; it appears to 
be the algorithm of choice for busy queues on machines with non-universal atomic primitives (e.g. test- 
and_set). Since much of the motivation for non-blocking algorithms is rooted in their immunity to large, 
unpredictable delays in process execution, we report experimental results both for systems with dedicated 
processors and for systems with several processes multiprogrammed on each processor. 

Keywords: concurrent queue, lock-free, non-blocking, compare_and_swap, multiprogramming. 

'This work was supported in part by NSF grants nos. CDA-94-01142 and CCR-93-19445, and by ONR research grant 
no. N00014-92-J-1801 (in conjunction with the DARPA Research in Information Science and Technology—High Performance 
Computing, Software Science and Technology program, ARPA Order no. 8930). 



REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of Information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 

sources, gathering and maintaining the data needed, and completing and reviewing the collection of Information.   Send comments regarding this burden estimate or any other 

aspect of this collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate   for Information Operations and 

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), 
Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

December 1995 
4. TITLE AND SUBTITLE 

3. REPORT TYPE AND DATES COVERED 

technical report 

Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms 

6. AUTHOR(S) 

M.M. Michael and M.L. Scott 

5. FUNDING NUMBERS 

N00014-92-J-1801 / ARPA 8930 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 

Computer Science Dept. 
734 Computer Studies Bldg. 
University of Rochester 
Rochester NY   14627-0226 

8. PERFORMING ORGANIZATION 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES) 

Office of Naval Research ARPA 
Information Systems 3701 N. Fairfax Drive 
Arlington VA 22217 Arlington VA 22203 

10. SPONSORING / MONITORING 

AGENCY REPORT NUMBER 

TR 600 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Distribution of this document is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT  (Maximum 200 words) 

(see title page) 

14. SUBJECT TERMS 

concurrent queue; lock-free; non-blocking; compare_and_swap; multiprogramming 
15. NUMBER OF PAGES 

12 pages  
16. PRICE CODE 

free to sponsors; else $2.00 
17. SECURITY CLASSIFICATION 

OF REPORT 

unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN   7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. 239-18 



1    Introduction 

Concurrent FIFO queues are widely used in parallel applications and operating systems. To ensure cor- 
rectness, concurrent access to shared queues has to be synchronized. Generally, algorithms for concurrent 
data structures, including FIFO queues, fall into two categories: blocking and non-blocking. Blocking 
algorithms allow a slow or delayed process to prevent faster processes from completing operations on the 
shared data structure indefinitely. Non-blocking algorithms guarantee that if there are one or more active 
processes trying to perform operations on a shared data structure, an operations will complete within finite 
number of time steps. On asynchronous (especially multiprogrammed) multiprocessor systems, blocking 
algorithms suffer significant performance degradation when a process is halted or delayed at an inopportune 
moment. Possible sources of delay include processor scheduling preemption, page faults, and cache misses. 
Non-blocking algorithms are more robust in the face of these events. 

Many researchers have proposed lock-free algorithms for concurrent FIFO queues. Hwang and 
Briggs [7], Sites [17], and Stone [20] present lock-free algorithms based on compare_and_swap.' These 
algorithms are incompletely specified; they omit details such as the handling of empty or single-item queues, 
or concurrent enqueues and dequeues. Lamport [9] presents a wait-free algorithm that restricts concurrency 
to a single enqueuer and a single dequeuer.2 

Gottlieb et al. [3] and Mellor-Crummey [11] present algorithms that are lock-free but not non-blocking: 
they do not use locking mechanisms, but they allow a slow process to delay faster processes indefinitely. 

Treiber [21] presents an algorithm that is non-blocking but inefficient: a dequeue operation takes 
time proportional to the number of the elements in the queue. Herlihy [6]; Prakash, Lee, and Johnson [15]; 
Turek, Shasha, and Prakash [22]; and Barnes [2] propose general methodologies for generating non-blocking 
versions of sequential or concurrent lock-based algorithms. However, the resulting implementations are 
generally inefficient compared to specialized algorithms. 

Herlihy and Wing [4] and Valois [23] present algorithms based on infinite arrays. Valois's algorithm also 
requires an unaligned compare_and_swap. Massalin and Pu [10] present lock-free algorithms based on a 
double_compare_and_swap primitive that operates on two arbitrary memory locations simultaneously, 
and that seems to be available only on later members of the Motorola 68000 family of processors. 

Stone [18] presents a queue that is lock-free but non-linearizable3 and not non-blocking. It is non- 
linearizable because a slow enqueuer may cause a faster process to enqueue an item and subsequently 
observe an empty queue, even though the enqueued item has never been dequeued. It is not non-blocking 
because a slow enqueue can delay dequeues by other processes indefinitely. Our experiments also revealed a 
race condition in which a certain interleaving of a slow dequeue with faster enqueues and dequeues by other 
process(es) can cause an enqueued item to be lost permanently. Stone also presents [19] a non-blocking 
queue based on a circular singly-linked list. The algorithm uses one anchor pointer to manage the queue 
instead of the usual head and tail. Our experiments revealed a race condition in which a slow dequeuer can 
cause an enqueued item to be lost permanently. 

Prakash, Lee, and Johnson [14,16] present a linearizable non-blocking algorithm that requires enqueuing 
and dequeuing processes to take a snapshot of the queue in order to determine its "state" prior to updating it. 
The algorithm achieves the non-blocking property by allowing faster processes to complete the operations 
of slower processes instead of waiting for them. 

'compare_and_swap, introduced on the IBM System 370, takes as arguments the address of a shared memory location, an 
expected value, and a new value. If the shared location currently holds the expected value, it is assigned the new value atomically. 
A Boolean return value indicates whether the replacement occurred. 

2 A wait-free algorithm is both non-blocking and starvation free: it guarantees that every active process will make progress within 
a bounded number of time steps. 

3 An implementation of a data structure is linearizable if it can always give an external observer, observing only the abstract data 
structure operations, the illusion that each of these operations takes effect instantaneously at some point between its invocation and 
its response [5]. 



Valois [23, 24] presents a list-based non-blocking algorithm that avoids the contention caused by the 
snapshots of Prakash et al.'s algorithm and allows more concurrency by keeping a dummy node at the head 
(dequeue end) of a singly-linked list, thus simplifying the special cases associated with empty and single- 
item queues (a technique suggested by Sites [17]). Unfortunately, the algorithm allows the tail pointer to 
lag behind the head pointer, thus preventing dequeuing processes from safely freeing or re-using dequeued 
nodes. If the tail pointer lags behind and a process frees a dequeued node, the linked list can be broken, so 
that subsequently enqueued items are lost. Since memory is a limited resource, prohibiting memory reuse 
is not an acceptable option. Valois therefore proposes a special mechanism to free and allocate memory. 
The mechanism associates a reference counter with each node. Each time a process creates a pointer to a 
node it increments the node's reference counter atomically. When it does not intend to access a node that 
it has accessed before, it decrements the associated reference counter atomically. In addition to temporary 
links from process-local variables, each reference counter reflects the number of links in the data structure 
that point to the node in question. For a queue, these are the head and tail pointers and linked-list links. A 
node is freed only when no pointers in the data structure or temporary variables point to it. 

We discovered and corrected [13] race conditions in the memory management mechanism and the 
associated non-blocking queue algorithm. Even so, the memory management mechanism and the queue 
that employs it are impractical: no finite memory can guarantee to satisfy the memory requirements of the 
algorithm all the time. Problems occur if a process reads a pointer to a node (incrementing the reference 
counter) and is then delayed. While it is not running, other processes can enqueue and dequeue an arbitrary 
number of additional nodes. Because of the pointer held by the delayed process, neither the node referenced 
by that pointer nor any of its successors can be freed. It is therefore possible to run out of memory even if 
the number of items in the queue is bounded by a constant. In experiments with a queue of maximum length 
12 items, we ran out of memory several times during runs of ten million enqueues and dequeues, using a 
free list initialized with 64,000 nodes. 

Most of the algorithms mentioned above are based on compare_and_swap, and must therefore deal 
with the ABA problem: if a process reads a value A in a shared location, computes a new value, and 
then attempts a compare_and_swap operation, the compare_and_swap may succeed when it should 
not, if between the read and the compare_and_swap some other process(es) change the A to a B and 
then back to an A again. The most common solution is to associate a modification counter with a pointer, 
to always access the counter with the pointer in any read-modify-compare_and_swap sequence, and to 
increment it in each successful compare_and_swap. This solution does not guarantee that the ABA 
problem will not occur, but it makes it extremely unlikely. To implement this solution, one must either 
employ a double-word compare_and_swap, or else use array indices instead of pointers, so that they may 
share a single word with a counter. Valois's reference counting technique guarantees preventing the ABA 
problem without the need for modification counters or the double-word compare_and_swap. Mellor- 
Crummey's lock-free queue [11] requires no special precautions to avoid the ABA problem because it 
uses compare_and_swap in a f etch_and_store-modify-compare_and_swap sequence rather than 
the usual read-modify-compare_and_swap sequence. However, this same feature makes the algorithm 
blocking. 

In section 2 we present two new concurrent FIFO queue algorithms inspired by ideas in the work 
described above. Both of the algorithms are simple and practical. One is non-blocking; the other uses 
a pair of locks. Correctness of these algorithms is discussed in section 3. We present experimental 
results in section 4. Using a 12-node SGI Challenge multiprocessor, we compare the new algorithms to 
a straightforward single-lock queue, Mellor-Crummey's blocking algorithm [11], and the non-blocking 
algorithms of Prakash et al. [16] and Valois [24], with both dedicated and multiprogrammed workloads. 
The results confirm the value of non-blocking algorithms on multiprogrammed systems. They also show 
consistently superior performance on the part of the new lock-free algorithm, both with and without 
multiprogramming. The new two-lock algorithm cannot compete with the non-blocking alternatives on 



a multiprogrammed system, but outperforms a single lock when several processes compete for access 
simultaneously. Section 5 summarizes our conclusions. 

2 Algorithms 

Figure 1 presents commented pseudo-code for the non-blocking queue data structure and operations. The 
algorithm implements the queue as a singly-linked list with Head and Tail pointers. As in Valois's algorithm, 
Head always points to a dummy node, which is the first node in the list. Tail points to either the last or second 
to last node in the list. The algorithm uses compare_ancLswap, with modification counters to avoid the 
ABA problem. To allow dequeuing processes to free dequeued nodes, the dequeue operation ensures that 
Tail does not point to the dequeued node nor to any of its predecessors. This means that dequeued nodes 
may safely be re-used. 

To obtain consistent values of various pointers we rely on sequences of reads that re-check earlier values 
to be sure they haven't changed. These sequences of reads are similar to, but simpler than, the snapshots 
of Prakash et al. (we need to check only one shared variable rather than two). A similar technique can 
be used to prevent the race condition in Stone's blocking algorithm. We use Treiber's simple and efficient 
non-blocking stack algorithm [21] to implement a non-blocking free list. 

Figure 2 presents commented pseudo-code for the two-lock queue data structure and operations. The 
algorithm employs separate Head and Tail locks, to allow complete concurrency between enqueues and 
dequeues. As in the non-blocking queue, we keep a dummy node at the beginning of the list. Because of the 
dummy node, enqueuers never have to access Head, and dequeuers never have to access Tail, thus avoiding 
potential deadlock problems that arise from processes trying to acquire the locks in different orders. 

3 Correctness 

3.1    Safety 

We show that the presented algorithms are safe by showing that they satisfy the following properties: 

1. The linked list is always connected. 

2. Nodes are only inserted after the last node in the linked list. 

3. Nodes are only deleted from the beginning of the linked list. 

4. Head always points to the first node in the linked list. 

5. Tail always point to a node in the linked list. 

Initially, all these properties hold. By induction, we show that they continue to hold, assuming that the 
ABA problem never occurs. 

1. The linked list is always connected because once a node is inserted, its next pointer is not set to NULL 
before it is freed, and no node is freed until it is deleted from the beginning of the list (property 3). 

2. In the lock-free algorithm, nodes are only inserted at the end of the linked list because they are linked 
through the Tail pointer, which always points to a node in the linked-list (property 5), and an inserted 
node is linked only to a node that has a NULL next pointer, and the only such node in the linked list 
is the last one (property 1). 



structure pointerJ 
structure node_t 
structure queueJ 

{ptr: pointer to node J, count: unsigned integer} 
{value: datatype, next: pointerJ:} 
{Head: pointerJ, Tail: pointerJ:} 

initialize(Q: pointer to queue_t) 
node = new_node() 
node->next.ptr = NULL 
Q->Head = Q->Tail = node 

enqueue(Q: pointer to queueJ, value: data type) 
El 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
Ell 
E12 
E13 

dequeue 
Dl 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
D10 

node = new_node() 
node->value = value 
node->next.ptr = NULL 
repeat 

tail = Q->Tail 
next = tail.ptr->next 
if tail == Q->Tail 

ifnext.ptr —NULL 
if CAS(&tail.ptr->next, next, <node, next.count+l>) 

break 
else 

CAS(&Q->Tail, tail, <next.ptr, tail.count+l>) 
CAS(&Q->Tail, tail, <node, tail.count+l>) 

# Allocate a free node 
# Make it the only node in the linked list 
# Both Head and Tail point to it 

# Allocate a new node from the free list 
# Copy enqueued value into node 
# Set next pointer of node to NULL 
# Keep trying until Enqueue is done 
# Read Tail.ptr and Tail.count together 
# Read next ptr and count fields together 
# Are tail and next consistent? 
# Was Tail pointing to the last node? 
# Try to link node at the end of the linked list 
# Enqueue is done. Exit loop 
# Tail was not pointing to the last node 
# Try to swing Tail to the next node 
# Enqueue is done. Try to swing Tail to the inserted nod 

Dll 
D12 
D13 
D14 
D15 

(Q: pointer to queueJ, pvalue: pointer to data type): boolean 
repeat 

head = Q->Head 
tail = Q->Tail 
next = hcad->next 
11 head — Q->Head 

11 head.ptr = tail.ptr 
if next.ptr == NULL 

return FALSE 
CAS(&Q->Tail, tail, <next.ptr, tail.count+l>) 

else 
# Read value before CAS, otherwise another dequeue might free the next node 
*p value = next.ptr-> value 
i!'CAS(&Q->Head, head, <next.ptr, head.count+l>) 

break 
I reel head.ptr) 
return TRUE 

# Keep trying until Dequeue is done 
# Read Head 
# Read Tail 
# Read Head.ptr->next 
# Are head, tail, and next consistent? 
# Is queue empty or Tail falling behind? 
# Is queue empty? 
# Queue is empty, couldn't dequeue 
# Tail is falling behind. Try to advance it 
# No need to deal with Tail 

# Try to swing Head to the next node 
# Dequeue is done. Exit loop 
# It is safe now to free the old dummy node 
# Queue was not empty, dequeue succeeded 

Figure 1: Structure and operation of a non-blocking concurrent queue. 



structure node_t {value: data type, next: pointer to node.t} 
structure queue.t {Head: pointer to node_t, Tail: pointer to node_t, H Jock: lock type, TJock: lock type} 

initialize(Q: pointer to queue.t) 
node = new_node() # Allocate a free node 
node->next.ptr = NULL # Make it the only node in the linked list 
Q->Head = Q->Tail = node # Both Head and Tail point to it 
Q->H_lock = Q->T_lock = FREE # Locks are initially free 

enqueue(Q: pointer to queue.t, value: data type) 
node = new_node() # Allocate a new node from the free list 
node->value = value # Copy enqueued value into node 
node->next.ptr = NULL # Set next pointer of node to NULL 
lock(&Q->T_lock) # Acquire TJock in order to access Tail 

Q->Tail->next = node # Link node at the end of the linked list 
Q->Tail = node # Swing Tail to node 

unlock(&Q->TJock) # Release TJock 

dequeue(Q: pointer to queue.t, pvalue: pointer to data type): boolean 
lock(&Q->H Jock) # Acquire H Jock in order to access Head 

node = Q->Head # Read Head 
new Jiead = node->next # Read next pointer 
if newJiead == NULL # Is queue empty? 

unlock(&Q->H Jock) # Release H Jock before return 
return FALSE # Queue was empty 

*pvalue = new Jiead->value # Queue not empty. Read value before release 
Q->Head = new Jiead # Swing Head to next node 

unlock(&Q->HJock) # Release H Jock 
free(node) # Free node 
return TRUE # Queue was not empty, dequeue succeeded 

Figure 2: Structure and operation of a two-lock concurrent queue. 

In the lock-based algorithm nodes are only inserted at the end of the linked list because they are 
inserted after the node pointed to by Tail, and in this algorithm Tail always points to the last node in 
the linked list, unless it is protected by the tail lock. 

3. Nodes are deleted from the beginning of the list, because they are deleted only when they are pointed 
to by Head and Head always points to the first node in the list (property 4). 

4. Head always points to the first node in the list, because it only changes its value to the next node 
atomically (either using the head lock or using compare_and_swap). When this happens the node 
it used to point to is considered deleted from the list. The new value of Head cannot be NULL because 
if there is one node in the linked list the dequeue operation returns without deleting any nodes. 

5. Tail always points to a node in the linked list, because it never lags behind Head, so it can never point 
to a deleted node. Also, when Tail changes its value it always swings to the next node in the list and 
it never tries to change its value if the next pointer is NULL. 



3.2 Linearizability 

The presented algorithms are linearizable because there is a specific point during each operation at which 
it is considered to "take effect" [5]. An enqueue takes effect when the allocated node is linked to the last 
node in the linked list. A dequeue takes effect when Head swings to the next node. And, as shown in the 
previous subsection (properties 1, 4, and 5), the queue variables always reflect the state of the queue; they 
never enter a transient state in which the state of the queue can be mistaken (e.g. a non-empty queue appears 
to be empty). 

3.3 Liveness 

The Lock-Free Algorithm is Non-Blocking 

We show that the lock-free algorithm is non-blocking by showing that if there are non-delayed processes 
attempting to perform operations on the queue, an operation is guaranteed to complete within finite time. 

An enqueue operation loops only if the condition in line E7 fails, the condition in line E8 fails, or the 
compare_and_swap in line E9 fails. A dequeue operation loops only if the condition in line D5 fails, the 
condition in line D6 holds (and the queue is not empty), or the compare_and_swap in line D12 fails. 

We show that the algorithm is non-blocking by showing that a process loops beyond a finite number of 
times only if another process completes an operation on the queue. 

• The condition in line E7 fails only if Tail is written by an intervening process after executing line E5. 
Tail always points to the last or second to last node of the linked list, and when modified it follows 
the next pointer of the node it points to. Therefore, if the condition in line E7 fails more than once, 
then another process must have succeeded in completing an enqueue operation. 

• The condition in line E8 fails if Tail was pointing to the second to last node in the linked-list. After 
the compare.and-swap in line E12, Tail must point to the last node in the list, unless a process has 
succeeded in enqueuing a new item. Therefore, if the condition in line E8 fails more than once, then 
another process must have succeeded in completing an enqueue operation. 

• The compare_and_swap in line E9 fails only if another process succeeded in enqueuing a new item 
to the queue. 

• The condition in line D5 and the compare_and_swap in line D12 fail only if Head has been written 
by another process. Head is written only when a process succeeds in dequeuing an item. 

• The condition in line D6 succeeds (while the queue is not empty) only if Tail points to the second 
to last node in the linked list (in this case it is also the first node). After the compare_and_swap 
in line D9, Tail must point to the last node in the list, unless a process succeeded in enqueuing a 
new item. Therefore, if the condition of line D6 succeeds more than once, then another process must 
have succeeded in completing an enqueue operation (and the same or another process succeeded in 
dequeuing an item). 

The Two-Lock Algorithm is Livelock-Free 

The two-lock algorithm does not contain any loops. Therefore, if the mutual exclusion lock algorithm 
used for locking and unlocking the head and tail locks is livelock-free, then the presented algorithm is 
livelock-free too. There are many mutual exclusion algorithms that are livelock-free [12]. 



4   Performance 

We use a 12-processor Silicon Graphics Challenge multiprocessor to compare the performance of the new 
algorithms to that of a single-lock algorithm, the algorithm of Prakash et al. [16], Valois's algorithm [24] 
(with corrections to the memory management mechanism [13]), and Mellor-Crummey's algorithm [11]. 
We include the algorithm of Prakash et al. because it appears to be the best of the known non-blocking 
alternatives. Mellor-Crummey's algorithm represents non-lock-based but blocking alternatives; it is simpler 
than the code of Prakash et al, and could be expected to display lower constant overhead in the absence of 
unpredictable process delays, but is likely to degenerate on a multiprogrammed system. We include Valois's 
algorithm to demonstrate that on multiprogrammed systems even a comparatively inefficient non-blocking 
algorithm can outperform blocking algorithms. 

For the two lock-based algorithms we use test-and-test_and_set locks with bounded exponential 
backoff [12, 1]. We also use backoff where appropriate in the non-lock-based algorithms. Performance 
was not sensitive to the exact choice of backoff parameters in programs that do at least a modest amount of 
work between queue operations. We emulate both test_and_set and the atomic operations required by 
the other algorithms (compare_and_swap, f etch_and_increment, f etch_and_decrement, etc.) 
using the MIPS R4000 load_linked and store_conditional instructions. 

C code for the tested algorithms can be obtained from f tp: / / f tp. cs . röchest er. edu/pub/ 
packages/sched_conscious_synch/concurrent_queues. The algorithms were compiled at 
the highest optimization level, and were carefully hand-optimized. We tested each of the algorithms in 
hours-long executions on various numbers of processors. It was during this process that we discovered the 
race conditions mentioned in section 1. 

All the experiments employ an initially-empty queue to which processes perform a series of enqueue 
and dequeue operations. Each process enqueues an item, does "other work", dequeues an item, does "other 
work", and repeats. With p processes, each process executes this loop [106/pJ or |"106/p] times, for a total 
of one million enqueues and dequeues. The "other work" consists of approximately 6 /is of spinning in an 
empty loop; it serves to make the experiments more realistic by preventing long runs of queue operations by 
the same process (which would display overly-optimistic performance due to an unrealistically low cache 
miss rate). We subtracted the time required for one processor to complete the "other work" from the total 
time reported in the figures. 

Figure 3 shows net elapsed time in seconds for one million enqueue/dequeue pairs. Roughly speaking, 
this corresponds to the time in microseconds for one enqueue/dequeue pair. More precisely, for k processors, 
the graph shows the time one processor spends performing 106/k enqueue/dequeue pairs, plus the amount 
by which the critical path of the other \06(k - \)/k pairs performed by other processors exceeds the time 
spent by the first processor in "other work" and loop overhead. For k = 1, the second term is zero. As k 
increases, the first term shrinks toward zero, and the second term approaches the critical path length of the 
overall computation; i.e. one million times the serial portion of an enqueue/dequeue pair. Exactly how much 
execution will overlap in different processors depends on the choice of algorithm, the number of processors 
k, and the length of the "other work" between queue operations. 

With only one processor, memory references in all but the first loop iteration hit in the cache, and 
completion times are very low. With two processors active, contention for head and tail pointers and queue 
elements causes a high fraction of references to miss in the cache, leading to substantially higher completion 
times. The queue operations of processor 2, however, fit into the "other work" time of processor 1, and vice 
versa, so we are effectively measuring the time for one processor to complete 5 x 105 enqueue/dequeue pairs. 
At three processors, the cache miss rate is about the same as it was with two processors. Each processor only 
has to perform 106/3 enqueue/dequeue pairs, but some of the operations of the other processors no longer 
fit in the first processor's "other work" time. Total elapsed time decreases, but by a fraction less than 1/3. 
Toward the right-hand side of the graph, execution time rises for most algorithms as smaller and smaller 



amounts of per-processor "other work" and loop overhead are subtracted from a total time dominated by 
critical path length. In the single-lock and Mellor-Crummey curves, the increase is probably accelerated as 
high rates of contention increase the average cost of a cache miss. In Valois's algorithm, the plotted time 
continues to decrease, as more and more of the memory management overhead moves out of the critical 
path and into the overlapped part of the computation. 

Figures 4 and 5 plot the same quantity as figure 3, but for a system with 2 and 3 processes per processor, 
respectively. The operating system multiplexes the processor among processes with a scheduling quantum 
of 10 ms. As expected, the blocking algorithms fare much worse in the presence of multiprogramming, 
since an inopportune preemption can block the progress of every process in the system. Also as expected, 
the degree of performance degradation increases with the level of multiprogramming. 

In all three graphs, the new non-blocking queue outperforms all of the other alternatives when three 
or more processors are active. Even for one or two processors, its performance is good enough that we 
can comfortably recommend its use in all situations. The two-lock algorithm outperforms the one-lock 
algorithm when more than 5 processors are active on a dedicated system: it appears to be a reasonable 
choice for machines that are not multiprogrammed, and that lack a universal atomic primitive (compare_ 
ancLswap or load_linked/store_conditional). 

5   Conclusions 

Queues are ubiquitous in parallel programs, and their performance is a matter of major concern. We have 
presented a concurrent queue algorithm that is simple, non-blocking, practical, and fast. We were surprised 
not to find it in the literature. It seems to be the algorithm of choice for any queue-based application on 
a multiprocessor with universal atomic primitives (e.g. compare.and.swap or load_linked/store_ 
conditional). 

We have also presented a queue with separate head and tail pointer locks. Its structure is similar to that of 
the non-blocking queue, but it allows only one enqueue and one dequeue to proceed at a given time. Because 
it is based on locks, however, it will work on machines with such simple atomic primitives äs test_and_ 
set. We recommend it for heavily-utilized queues on such machines (For a queue that is usually accessed 
by only one or two processors, a single lock will run a little faster.) 

This work is part of a larger project that seeks to evaluate the tradeoffs among alternative mechanisms 
for atomic update of common data structures. Structures under consideration include stacks, queues, 
heaps, search trees, and hash tables. Mechanisms include single locks, data-structure-specific multi- 
lock algorithms, general-purpose and special-purpose non-blocking algorithms, and function shipping to a 
centralized manager (a valid technique for situations in which remote access latencies dominate computation 
time). 

In related work [8, 25, 26], we have been developing general-purpose synchronization mechanisms that 
cooperate with a scheduler to avoid inopportune preemption. Given that immunity to processes delays is a 
primary benefit of non-blocking parallel algorithms, we plan to compare these two approaches in the context 
of multiprogrammed systems. 

References 

[1]      T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors. 
IEEE Transactions on Parallel and Distributed Systems, 1(1):6—16, January 1990. 



Single lock 
MC lock-free 
Valois non-blocking 
new two-lock 

PLJ non-blocking 
new non-blocking 

P 

_i—1_ 
1 2 3 4 5 6 7 8 9 10        11 12 

Processors 

Figure 3: Net execution time for one million enaueue/deaueue Dairs on a dedicated multiprocessor. 

1 2 3 4 5 6 7 8 9 10        11 12 
Processors 

Figure 4: Net execution time for one million enqueue/dequeue pairs on a multiprogrammed system with 2 
processes per processor. 

Figure 5: Net execution time for one million enqueue/dequeue pairs on a multiprogrammed system with 3 
processes per processor. 

10 



[2] G. Barnes. A Method for Implementing Lock-Free Data Structures. In Proceedings of the Fifth 
Annual ACM Symposium on Parallel Algorithms and Architectures, Velen, Germany, June-July 
1993. 

[3] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic Techniques for the Efficient Coordination 
of Very Large Numbers of Cooperating Sequential Processors. ACM Transactions on Programming 
Languages and Systems, 5(2): 164-189, April 1983. 

[4] M. P. Herlihy and J. M. Wing. Axions for Concurrent Objects. In Proceedings of the 14th ACM 
Symposium on Principles of Programming Languages, pages 13-26, January 1987. 

[5] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent Objects. 
ACM Transactions on Programming Languages and Systems, 12(3):463-492, July 1990. 

[6] M. Herlihy. A Methodology for Implementing Highly Concurrent Data Objects. ACM Transactions 
on Programming Languages and Systems, 15(5):745-770, November 1993. 

[7]      K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing. McGraw-Hill, 1984. 

[8] L. Kontothanassis and R. Wisniewski. Using Scheduler Information to Achieve Optimal Barrier 
Synchronization Performance. In Proceedings of the Fourth ACM Symposium on Principles and 
Practice of Parallel Programming, May 1993. 

[9] L. Lamport. Specifying Concurrent Program Modules. ACM Transactions on Programming Lan- 
guages and Systems, 5(2): 190-222, April 1983. 

[10] H. Massalin and C. Pu. A Lock-Free Multiprocessor OS Kernel. Technical Report CUCS-005-91, 
Computer Science Department, Columbia University, 1991. 

[11] J. M. Mellor-Crammey. Concurrent Queues: Practical Fetch-and-O Algorithms. TR 229, Computer 
Science Department, University of Rochester, November 1987. 

[12] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on Shared-Memory 
Multiprocessors. ACM Transactions on Computer Systems, 9(l):21-65, February 1991. 

[13] M. M. Michael and M. L. Scott. Correction of a Memory Management Method for Lock-Free Data 
Structures. Technical Report 599, Computer Science Department, University of Rochester, December 
1995. 

[14] S. Prakash, Y. H. Lee, and T. Johnson. A Non-Blocking Algorithm for Shared Queues Using 
Compare-and_Swap. In Proceedings of the 1991 International Conference on Parallel Processing, 
pages 11:68-75, 1991. 

[15] S. Prakash, Y. H. Lee, and T Johnson. Non-Blocking Algorithms for Concurrent Data Structures. 
Technical Report 91-002, University of Florida, 1991. 

[16] S. Prakash, Y H. Lee, and T. Johnson. A Nonblocking Algorithm for Shared Queues Using Compare- 
and-Swap. IEEE Transactions on Computers, 43(5):548-559, May 1994. 

[17] R.Sites. Operating Systems and Computer Architecture. In H. Stone, editor, Introduction to Computer 
Architecture, 2nd edition, Chapter 12, 1980. Science Research Associates. 

[18] J. M. Stone. A Simple and Correct Shared-Queue Algorithm Using Compare-and-Swap. In Proceed- 
ings Sup ercomputing '90, November 1990. 

11 



[19] J. M. Stone. A Non-Blocking Compare-and-Swap Algorithm for a Shared Circular Queue. In S. 
Tzafestas et ai, editors, Parallel and Distributed Computing in Engineering Systems, pages 147-152, 
1992. Elsevier Science Publishers. 

[20]    H. S. Stone. High Performance Computer Architecture. Addison-Wesley, 1993. 

[21] R. K.Treiber. Systems Programming: Coping with Parallelism. InRJ 5118, IBM Almaden Research 
Center, April 1986. 

[22] J. Turek, D. Shasha, and S. Prakash. Locking without Blocking: Making Lock Based Concurrent 
Data Structure Algorithms Nonblocking. In Proceedings of the 11th ACM SIGACT-SIGMOD-SIGART 
Symposium on Principles of Database Systems, pages 212-222, 1992. 

[23] J. D. Valois. Implementing Lock-Free Queues. In Seventh International Conference on Parallel and 
Distributed Computing Systems, Las Vegas, NV, October 1994. 

[24] J. D. Valois. Lock-Free Data Structures. Ph. D. dissertation, Rensselaer Polytechnic Institute, May 
1995. 

[25] R. W. Wisniewski, L. Kontothanassis, and M. L. Scott. Scalable Spin Locks for Multiprogrammed 
Systems. In Proceedings of the Eighth International Parallel Processing Symposium, pages 583-589, 
Cancun, Mexico, April 1994. Earlier but expanded version available as TR 454, Computer Science 
Department, University of Rochester, April 1993. 

[26] R. W. Wisniewski, L. I. Kontothanassis, and M. L. Scott. High Performance Synchronization 
Algorithms for Multiprogrammed Multiprocessors. In Proceedings of the Fifth ACM Symposium on 
Principles and Practice of Parallel Programming, Santa Barbara, CA, July 1995. 

12 


